Abstract

The objective of this study was to develop a machine learning classifier to infer attentional tunneling through behavioral indices. This research serves as a proof of concept for a method for inferring operator state to trigger adaptations to user interfaces. Adaptive user interfaces adapt their information content or configuration to changes in operating context. Operator attentional states represent a promising class of triggers for these adaptations. Behavioral indices may be a viable alternative to physiological correlates for triggering interface adaptations based on attentional state. A visual search task sought to induce attentional tunneling in participants. We analyzed user interaction under tunnel and non-tunnel conditions to determine whether the paradigm was successful. We then examined the performance trade-offs stemming from attentional tunnels. Finally, we developed a machine learning classifier to identify patterns of interaction characteristics associated with attentional tunnels. The experimental paradigm successfully induced attentional tunnels. Attentional tunnels were shown to improve performance when information appeared within them, but to hinder performance when it appeared outside. Participants were found to be more tunneled in their second tunnel trial relative to their first. Our classifier achieved a classification accuracy similar to comparable studies (area under curve = 0.74). Behavioral indices can be used to infer attentional tunneling. There is a performance trade-off from attentional tunneling, suggesting the opportunity for adaptive systems. This research applies to adaptive automation aimed at managing operator attention in information-dense work domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.