Abstract

We consider an ancient solution $g(•, t)$ of the Ricci flow on a compact surface that exists for $t\in (−\infty, T)$ and becomes spherical at time $t = T$. We prove that the metric $g(•, t)$ is either a family of contracting spheres, which is a type I ancient solution, or a King–Rosenau solution, which is a type II ancient solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.