Abstract

Alzheimer's disease (AD) is a progressive chronic illness that leads to cognitive decline and dementia. Neuroimaging technologies, such as functional magnetic resonance imaging (fMRI), and deep learning approaches offer promising avenues for AD classification. In this study, we investigate the use of fMRI-based functional connectivity (FC) measures, including the Pearson correlation coefficient (PCC), maximal information coefficient (MIC), and extended maximal information coefficient (eMIC), combined with extreme learning machines (ELM) for AD classification. Our findings demonstrate that employing non-linear techniques, such as MIC and eMIC, as features for classification yields accurate results. Specifically, eMIC-based features achieve a high accuracy of 94% for classifying cognitively normal (CN) and mild cognitive impairment (MCI) individuals, outperforming PCC (81%) and MIC (85%). For MCI and AD classification, MIC achieves higher accuracy (81%) compared to PCC (58%) and eMIC (78%). In CN and AD classification, eMIC exhibits the best accuracy of 95% compared to MIC (90%) and PCC (87%). These results underscore the effectiveness of fMRI-based features derived from non-linear techniques in accurately differentiating AD and MCI individuals from CN individuals, emphasizing the potential of neuroimaging and machine learning methods for improving AD diagnosis and classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.