Abstract

More than 35 million patients are suffering from Alzheimer’s disease and this number is growing, which puts a heavy burden on countries around the world. Early detection is of benefit, in which the deep learning can aid AD identification effectively and gain ideal results. A novel eight-layer convolutional neural network with batch normalization and dropout techniques for classification of Alzheimer’s disease was proposed. After data augmentation, the training dataset contained 7399 AD patient and 7399 HC subjects. Our eight-layer CNN-BN-DO-DA method yielded a sensitivity of 97.77%, a specificity of 97.76%, a precision of 97.79%, an accuracy of 97.76%, a F1 of 97.76%, and a MCC of 95.56% on the test set, which achieved the best performance in seven state-of-the-art approaches. The results strongly demonstrate that this method can effectively assist the clinical diagnosis of Alzheimer’s disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.