Abstract

Amyotrophic lateral sclerosis (ALS) is incurable neurological disorder with rapidly progressive course. Common early symptoms of ALS are difficulty in swallowing and speech. However, early acoustic manifestation of speech and voice symptoms is very variable, that making their detection very challenging, both by human specialists and automatic systems. This study presents an approach to voice assessment for automatic system that separates healthy people from patients with ALS. In particular, this work focus on analysing of sustain phonation of vowels /a/ and/i/ to perform automatic classification of ALS patients. A wide range of acoustic features such as MFCC, formants, jitter, shimmer, vibrato, PPE, GNE, HNR, etc. were analysed. We also proposed a new set of acoustic features for characterizing harmonic structure of the vowels. Calculation of these features is based on pitch synchronized voice analysis. A linear discriminant analysis (LDA) was used to classify the phonation produced by patients with ALS and those by healthy individuals. Several algorithms of feature selection were tested to find optimal feature subset for LDA model. The study’s experiments show that the most successful LDA model based on 32 features picked out by LASSO feature selection algorithm attains 99.7% accuracy with 99.3% sensitivity and 99.9% specificity. Among the classifiers with a small number of features, we can highlight LDA model with 5 features, which has 89.0% accuracy (87.5% sensitivity and 90.4% specificity).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.