Abstract

BackgroundClassification of acute myeloid leukemia (AML) relies on manual analysis of bone marrow or peripheral blood smear images. We aimed to construct a machine learning model for automatic classification of AML-M1 and M2 subtypes in bone marrow smear images. MethodsBone marrow smear images of AML patients were extracted from the Cancer Imaging Archive (TCIA) open database. Classification criteria of AML subtypes were based on the French-American-British (FAB) classification system. Random forest method and broad learning system (BLS) were used to develop the classification model. Morphological features, radiomics features, and clinical features were extracted. The performance of the classification model was evaluated by calculating accuracy, precision, recall, F1-score, and area under the curve (AUC). A total of 50 bone marrow smear images (AML-M1, 31 cases; AML-M2, 19 cases) with 500 slices were included in this study. ResultsA total of 43 morphological features, 276 radiomics features, and 1 clinical feature were extracted. Finally, 9 variables including 2 morphological features, 6 radiomics features, and 1 clinical feature were selected into the classification model. The best classification performance was observed in the random forest model with 9 variables, with the average accuracy, AUC, F1-score, recall, and precision of the model being 0.998 ± 0.003, 0.998 ± 0.004, 0.998 ± 0.004, 0.996 ± 0.009, and 1 ± 0, respectively. ConclusionThe random forest model performed well for the classification of AML-M1 and M2, which may provide a tool for clinicians to classify AML-M1 and M2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call