Abstract
Acute Leukemia is a life-threatening disease common both in children and adults that can lead to death if left untreated. Acute Lymphoblastic Leukemia (ALL) spreads out in children's bodies rapidly and takes the life within a few weeks. To diagnose ALL, the hematologists perform blood and bone marrow examination. Manual blood testing techniques that have been used since long time are often slow and come out with the less accurate diagnosis. This work improves the diagnosis of ALL with a computer-aided system, which yields accurate result by using image processing and deep learning techniques. This research proposed a method for the classification of ALL into its subtypes and reactive bone marrow (normal) in stained bone marrow images. A robust segmentation and deep learning techniques with the convolutional neural network are used to train the model on the bone marrow images to achieve accurate classification results. Experimental results thus obtained and compared with the results of other classifiers Naïve Bayesian, KNN, and SVM. Experimental results reveal that the proposed method achieved 97.78% accuracy. The obtained results exhibit that the proposed approach could be used as a tool to diagnose Acute Lymphoblastic Leukemia and its sub-types that will definitely assist pathologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.