Abstract
The PhysioNet 2020 Challenge focused on the automatic classification of 27 cardiac abnormalities (CAs) from 12-lead ECG signals. We investigated on a hybrid approach, combining average-template-based algorithms with deep neural networks (DNNs), to build an ensemble classification model. We calibrated the model on the available 40,000+ ECGs, while organizers tested the model on a private test set. Standard ECG preprocessing was applied. For ECGs related to CAs altering the ECG morphology, multi-lead average P, QRS, and T segments were computed. For signals associated with irregular rhythms, time dependent features were computed. The ensemble model comprised of: i) three DNNs to classify morphology-related CAs. ii) a fully connected neural network to classify irregular rhythm; and iii) a threshold-based classifier for premature ventricular beat detection. The organizers designed a score for ranking the models. The ensemble model proposed by our team “BiSP Lab” reached the 40th position, and obtained a score of -0.179 on the private test set. Despite the low performance obtained on the private test set, our ensemble model showed potential for classification of CAs from ECGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.