Abstract

One of the aims of the modern representation theory is to solve classification problems for subcategories of modules over a unitary ring R. In this paper, we introduce the concept of 1-absorbing comultiplication modules and classify 1-absorbing comultiplication modules over local Dedekind domains and we study it in detail from the classification problem point of view. The main purpose of this article is to classify all those indecomposable 1-absorbing comultiplication modules with finite-dimensional top over pullback rings of two local Dedekind domains and establish a connection between the 1-absorbing comultiplication modules and the pure-injective modules over such rings. In fact, we extend the definition and results given in [17] to a more general 1-absorbing comultiplication modules case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.