Abstract

In machine learning, class noise occurs frequently and deteriorates the classifier derived from the noisy data set. This paper presents two promising classifiers for this problem based on a probabilistic model proposed by Lawrence and Schölkopf (2001). The proposed algorithms are able to tolerate class noise, and extend the earlier work of Lawrence and Schölkopf in two ways. First, we present a novel incorporation of their probabilistic noise model in the Kernel Fisher discriminant; second, the distribution assumption previously made is relaxed in our work. The methods were investigated on simulated noisy data sets and a real world comparative genomic hybridization (CGH) data set. The results show that the proposed approaches substantially improve standard classifiers in noisy data sets, and achieve larger performance gain in non-Gaussian data sets and small size data sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call