Abstract

An accurate Named Entity Recognition (NER) is important for knowledge discovery in text mining. This paper proposes an ensemble machine learning approach to recognise Named Entities (NEs) from unstructured and informal medical text. Specifically, Conditional Random Field (CRF) and Maximum Entropy (ME) classifiers are applied individually to the test data set from the i2b2 2010 medication challenge. Each classifier is trained using a different set of features. The first set focuses on the contextual features of the data, while the second concentrates on the linguistic features of each word. The results of the two classifiers are then combined. The proposed approach achieves an f-score of 81.8%, showing a considerable improvement over the results from CRF and ME classifiers individually which achieve f-scores of 76% and 66.3% for the same data set, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.