Abstract

Based on a relativistic fluid-Maxwell model, laser-induced plasma dynamics is investigated for relativistic periodic waves. Within a one-dimensional (1D) description, the Akhiezer–Polovin model is applied to the existence of periodic, nonlinearly coupled electromagnetic and electrostatic waves, and the corresponding particle motion. Known existence criteria for periodic solutions are generalized. The corresponding stability behaviors are investigated by 1D integrators of the relativistic fluid-Maxwell model. It is shown that in contrast to the vacuum solution, linearly polarized coupled electromagnetic-electrostatic waves are unstable in plasmas. The magnitudes of the growth rates are investigated in terms of the maximum amplitudes and normalized phase velocities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.