Abstract
This paper offers a characterization of performance limits for classification and reconstruction of high-dimensional signals from noisy compressive measurements, in the presence of side information. We assume the signal of interest and the side information signal are drawn from a correlated mixture of distributions/components, where each component associated with a specific class label follows a Gaussian mixture model (GMM). We provide sharp sufficient and/or necessary conditions for the phase transition of the misclassification probability and the reconstruction error in the low-noise regime. These conditions, which are reminiscent of the well-known Slepian-Wolf and Wyner-Ziv conditions, are a function of the number of measurements taken from the signal of interest, the number of measurements taken from the side information signal, and the geometry of these signals and their interplay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.