Abstract
The purpose of this paper is to construct a classification model that can identify class accurately and control imbalance. A novel adaptive decision support vector machine (DSVM) is proposed for the recognition of transgenic cotton seed based on terahertz spectroscopy (THz), which make the traditional support vector machine is ability of adaptive decision, and select optimal parameters by using particle swarm optimization (PSO). For the classification and recognition of the transgenic cotton seeds, firstly, the factor analysis (FA) is applied to reduce the dimension and extract the feature spectrum of original spectral information. Secondly, the feature spectrum is selected and fed into the model of DSVM to recognize the different transgenic cotton seeds. The experimental results show that the proposed method can effectively classify the different transgenic cotton seeds, and its recognition rate surpasses the comparative method evidently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optik - International Journal for Light and Electron Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.