Abstract

In the field of road traffic management, fuzzy techniques have already been used for traffic control. In this paper, we use fuzzy methods for traffic data analysis. The results of the data analysis are classification and prediction systems. Our work is focused on fuzzy clustering methods. The known clustering models are extended to: constrained prototypes, the use of a mix of different prototypes for one data set, partial supervision of the clustering, and the estimation of the number of clusters by cluster merging. Two successful application examples are given. The first one is the classification of traffic jam on a German autobahn, and the second application is a long-term prediction of traffic volume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.