Abstract
The paper proposes a classification algorithm based on support tensor machines which finds the maximum margin between the tensor spaces. The proposed algorithm has been deployed to classify erythemato-squamous diseases (ESDs) with the help of its features. Features are derived from the skin lesion images of ESDs, and it has been represented as second-order tensors, i.e., $$ \varvec{X} \in \varvec{ }{\mathbb{R}}^{\varvec{n}} $$ can be transformed into $$ \varvec{X} \in \,\varvec{ }{\mathbf{\Re }}^{{\varvec{n}_{1} }} \,\varvec{ } \otimes \,{\mathbf{\Re }}^{{\varvec{n}_{2} }} $$ where $$ n_{1} \times n_{2} \cong n $$. After deriving the features from the skin lesion images, dominant features are extracted using Tucker tensor decomposition method. Most of the existing machine learning algorithms depend on the vector-based learning models, and these algorithms suffer from the data overfitting problem. To resolve this problem, in this paper, tensor-based learning is implemented for classification. Proposed algorithm is evaluated with the real-time dataset (Xie et al. in: He, Liu, Krupinski, Xu (eds) Health information science, Springer, Berlin, 2012), and higher classification accuracy of 99.93–100% is achieved. The acquired results are compared with the existing machine learning algorithms, and it drives home the point that the proposed algorithm provides higher classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences, India Section A: Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.