Abstract

Much of learning disabilities research relies on categorical classification frameworks that use psychometric tests and cut points to identify children with reading or math difficulties. However, there is increasing evidence that the attributes of reading and math learning disabilities are dimensional, representing correlated continua of severity. We discuss issues related to categorical and dimensional approaches to reading and math disabilities, and their comorbid associations, highlighting problems with the use of cut points and correlated assessments. Two simulations are provided in which the correlational structure of a set of cognitive and achievement data are simulated from a single population with no categorical structures. The simulations produce profiles remarkably similar to reported profile differences, suggesting that the patterns are a product of the cut point and the correlational structure of the data. If dimensional approaches better fit the attributes of learning disability, new conceptualizations and better methods to identification and intervention may emerge, especially for comorbid associations of reading and math difficulties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.