Abstract

Frequency-hopping (FH) communication adversarial research is a key area in modern electronic countermeasures. To address the challenge posed by interfering parties that use deep neural networks (DNNs) to classify and identify multiple intercepted FH signals-enabling targeted interference and degrading communication performance-this paper presents a batch feature point targetless adversarial sample generation method based on the Jacobi saliency map (BPNT-JSMA). This method builds on the traditional JSMA to generate feature saliency maps, selects the top 8% of salient feature points in batches for perturbation, and increases the perturbation limit to restrict the extreme values of single-point perturbations. Experimental results in a white-box environment show that, compared with the traditional JSMA method, BPNT-JSMA not only maintains a high attack success rate but also enhances attack efficiency and improves the stealthiness of the adversarial samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.