Abstract

We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Dirichlet-Neumann boundary value problem \[ \begin{cases} u''(x) + \lambda f(u) = 0, \quad 0 \lt x \lt 1, u(0) = 0, \quad u'(1) = -c \lt 0, \end{cases} \] where $\lambda \gt 0$ is a bifurcation parameter and $c \gt 0$ is an evolution parameter. We mainly prove that, under some suitable assumptions on $f$, there exists $c_{1} \gt 0$, such that, on the $(\lambda,\|u\|_{\infty})$-plane, (i) when $0 \lt c \lt c_{1}$, the bifurcation curve is $S$-shaped; (ii) when $c \geq c_{1}$, the bifurcation curve is $\subset$-shaped. Our results can be applied to the one-dimensional perturbed Gelfand equation with $f(u) = \exp \big( \frac{au}{a+u} \big)$ for $a \geq 4.37$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.