Abstract

We classify Lie–Poisson brackets that are formed from Lie algebra extensions. The problem is relevant because many physical systems owe their Hamiltonian structure to such brackets. A classification involves reducing all brackets to a set of normal forms, and is achieved partially through the use of Lie algebra cohomology. For extensions of order less than five, the number of normal forms is small and they involve no free parameters. We derive a general method of finding Casimir invariants of Lie–Poisson bracket extensions. The Casimir invariants of all low-order brackets are explicitly computed. We treat in detail a four field model of compressible reduced magnetohydrodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.