Abstract

Security assessment and classification are the major concerns in real-time operation of electric power systems. This paper proposes a multiclass support vector machine (SVM) classifier for static and transient security assessment and classification. A straightforward and quick procedure called the sequential forward selection method is used for a feature selection process. The security status of any given operating condition is classified into four modes, viz., secure, critically secure, insecure, and highly insecure, based on the computation of a security index. The proposed SVM-based pattern classifier system is implemented and tested on standard benchmark systems. The simulation results of the multiclass SVM classifier are compared with least-squares, probabilistic neural network, extreme learning machine, and extreme SVM classifiers. The feasibility of implementation of the proposed classifier system for online security evaluation is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.