Abstract
To characterize the hydraulic fracture network of a conglomerate reservoir, a slant core well was drilled aimed to obtain direct information regarding hydraulic fractures through slant core at the conglomerate hydraulic fracturing test site (CHFTS). Core fracture classification was the fundamental issue of the project. In this study, three grade classifications for core fractures were proposed. Comprehensive classification of core fractures was carried out using the analytic hierarchy process (AHP)–fuzzy comprehensive evaluation (FCE) method. Finally, the fracture classification results were validated against numerical simulation. The grade-1 fracture classification included hydraulic fractures, drilling-induced fractures and core cutting-induced fractures. A total of 214 hydraulic fractures were observed. For the grade-2 classification, the hydraulic fractures were divided into 47 tensile fractures and 167 shear fractures. For the grade-3 classification, the shear fractures were subdivided into 45 tensile-shear fractures and 122 compression-shear fractures. Based on the numerical verification of the core fracture classifications, the dataset acquired was applied to analyze the spatial distribution of tensile and shear fractures. Results showed that the tensile fractures were mainly in the near-wellbore area with lateral distances of less than 20–25 m from the wellbore. The shear fractures were mainly in the far-wellbore area with lateral distances of 20–30 m from the wellbore. These results provide a basis for understanding the fracture types, density, and failure mechanisms of post-fracturing conglomerate reservoir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.