Abstract

Classification models can be developed by statistical or mathematical programming discriminant analysis techniques. Variable selection extensions of these techniques allow the development of classification models with a limited number of variables. Although stepwise statistical variable selection methods are widely used, the performance of the resultant classification models may not be optimal because of the stepwise selection protocol and the nature of the group separation criterion. A mixed integer programming approach for selecting variables for maximum classification accuracy is developed in this paper and the performance of this approach, measured by the leave-one-out hit rate, is compared with the published results from a statistical approach in which all possible variable subsets were considered. Although this mixed integer programming approach can only be applied to problems with a relatively small number of observations, it may be of great value where classification decisions must be based on a limited number of observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.