Abstract
Classiculasinensis, isolated from decaying leaves from Mozigou, Chongqing Municipality, China, is described as a new species. The new species is a member of basidiomycetous aquatic hyphomycetes which represent a small proportion of all aquatic hyphomycetes. This species falls within the genus Classicula (Classiculaceae, Pucciniomycotina) and is closely related to C.fluitans, based on multiple gene sequence analyses. Morphologically, it is characterised by the apical, hyaline, obclavate or navicular conidia with several hair-like lateral appendages and by its holoblastic and monoblastic conidiogenesis, with a flat un-thickened conidiogenous locus. Clamp connections and haustorial branches were often observed in culture.
Highlights
Aquatic hyphomycetes constitute a dominant mycoflora on submerged decaying plant debris, both in lotic and lentic systems (Khan 1987)
We describe these specimens as a new species and discuss its phylogenetic placement based on the combined sequences of the 18S and 28S rDNA, the internal transcribed spacer regions of rDNA (ITS 1 and 2, including the 5.8S rDNA gene) and the translation elongation factor 1-a (TEF1)
The close relationship between C. sinensis and C. fluitans was supported with a posterior probability of 1.00 in the Bayesian analysis and with a bootstrap value of 0.93 in the maximum likelihood analysis
Summary
Aquatic hyphomycetes constitute a dominant mycoflora on submerged decaying plant debris, both in lotic and lentic systems (Khan 1987). Two new classes, Tritirachiomycetes (Schell et al 2011) and Spiculogloeomycetes (Wang et al 2015), were added to Pucciniomycotina. Classicula is characterised by the production of clamped hyphae with tremelloid haustorial cells and binucleate fusoid conidia with 3–4 bristle-like lateral branches (Marvanová and Bandoni 1987). Bauer et al (2003) defined the phylogenetic positions of genera Jaculispora and Classicula based on the small subunit of ribosomal DNA (18S rDNA). Subsequent analyses of both the 18S and the large subunit ribosomal DNA (28S rDNA) data supported the conclusion that the two genera are closely related and both belong to class of Classiculomycetes (Schell et al 2011)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.