Abstract
We consider the classical XY model (O(2) nonlinear sigma-model) on a class of lattices with the (fractal) dimensions 1<D<2. The Berezinskii's harmonic approximation suggests that the model undergoes a phase transition in which the low temperature phase is characterized by stretched exponential decay of correlations. We prove an exponentially decaying upper bound for the two-point correlation functions at non-zero temperatures, thus excluding the possibility of such a phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.