Abstract

Brain-imaging research has predominantly generated insight by means of classical statistics, including regression-type analyses and null-hypothesis testing using t-test and ANOVA. Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions. The present considerations should help reduce current confusion between model-driven classical hypothesis testing and data-driven learning algorithms for investigating the brain with imaging techniques.

Highlights

  • Among the greatest challenges humans face are cultural misunderstandings between individuals, groups, and institutions (Hall, 1976)

  • The topic of the present paper is the culture clash between knowledge generation based on null-hypothesis testing and out-of-sample pattern generalization (Friedman, 1998; Breiman, 2001; Shmueli, 2010; Donoho, 2015). These statistical paradigms are increasingly combined in brain-imaging studies (Kriegeskorte et al, 2009; Varoquaux and Thirion, 2014)

  • Neuroscience has transitioned from qualitative reports of few patients with neurological brain lesions to quantitative lesion-symptom mapping on the voxel level in hundreds of patients (Gläscher et al, 2012)

Read more

Summary

Frontiers in Neuroscience

Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions.

INTRODUCTION
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.