Abstract
The dynamics of a classical branelike object in a curved background is derived from the covariant stress-energy conservation of the brane matter. The world sheet equations and boundary conditions are obtained in the pole-dipole approximation, where nontrivial brane thickness gives rise to its intrinsic angular momentum. It is shown that intrinsic angular momentum couples to both, the background curvature and the brane orbital degrees of freedom. The whole procedure is manifestly covariant with respect to spacetime diffeomorphisms and world sheet reparametrizations. In addition, two extra gauge symmetries are discovered and utilized. The examples of the point particle and the string in 4 spacetime dimensions are analyzed in more detail. A particular attention is paid to the Nambu-Goto string with massive spinning particles attached to its ends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.