Abstract

We show that the honeycomb Heisenberg antiferromagnet with J_{1}/2=J_{2}=J_{3}, where J_{1}, J_{2}, and J_{3} are first-, second-, and third-neighbor couplings, respectively, forms a classical spin liquid with pinch-point singularities in the structure factor at the Brillouin zone corners. Upon dilution with nonmagnetic ions, fractionalized degrees of freedom carrying 1/3 of the free moment emerge. Their effective description in the limit of low temperature is that of spins randomly located on a triangular lattice, with a frustrated sublattice-sensitive interaction of long-ranged logarithmic form. The XY version of this magnet exhibits nematic thermal order by disorder. This comes with a clear experimental diagnostic in neutron scattering, which turns out to apply also to the case of the celebrated planar order by disorder of the kagome Heisenberg antiferromagnet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call