Abstract

The paper deals with a generalized Cauchy problem for quasi-linear hyperbolic functional differential systems. The unknown function is the functional variable in the system of equations and the partial derivatives appear in the classical sense. A theorem on the local existence of a solution is proved. The initial problem is transformed into a system of functional integral equations for an unknown function and for their partial derivatives with respect to spatial variables. A method of bicharacteristics and integral inequalites are applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.