Abstract
Recently it was shown that the main distinguishing features of quantum mechanics (QM) can be reproduced by a model based on classical random fields, so called prequantum classical statistical field theory (PCSFT). This model provides a possibility to represent averages of quantum observables, including correlations of observables on subsystems of a composite system (e.g., entangled systems), as averages with respect to fluctuations of classical (Gaussian) random fields. In this note we consider some consequences of PCSFT for quantum information theory. They are based on the observation \cite{W} of two authors of this paper that classical Gaussian channels (important in classical signal theory) can be represented as quantum channels. Now we show that quantum channels can be represented as classical linear transformations of classical Gaussian signal
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.