Abstract

The geometrical properties of the classical energy-action surface are studied for a nuclear Woods-Saxon-like spherical potential in connection with the EBK semiclassical method of quantisation. Comparisons are made with other well known cases: the spherical harmonic oscillator and the spherical billiard. The shift of single-particle energies from A=208 to A=16 is calculated by a simple method inspired by the Erhenfest adiabatic invariants. Semiclassical results are then compared with exact Schrodinger energies. It is seen that the most significant features of the single-particle spectrum are explained by local properties of the energy-action surface (curvature, slope) and by their evolution with particle number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.