Abstract
We study a spherically symmetric setup consisting of a Schwarzschild metric as the background geometry in the framework of classical polymerization. This process is an extension of the polymeric representation of quantum mechanics in such a way that a transformation maps classical variables to their polymeric counterpart. We show that the usual Schwarzschild metric can be extracted from a Hamiltonian function which in turn gets modifications due to the classical polymerization. Then, the polymer corrected Schwarzschild metric may be obtained by solving the polymer-Hamiltonian equations of motion. It is shown that while the conventional Schwarzschild space-time is a vacuum solution of the Einstein equations, its polymer-corrected version corresponds to an energy-momentum tensor that exhibits the features of dark energy. We also use the resulting metric to investigate some thermodynamical quantities associated with the Schwarzschild black hole, and in comparison with the standard Schwarzschild metric the similarities and differences are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.