Abstract
We investigate the classical phase diagram of the stuffed honeycomb Heisenberg lattice, which consists of a honeycomb lattice with a superimposed triangular lattice formed by sites at the center of each hexagon. This lattice encompasses and interpolates between the honeycomb, triangular and dice lattices, preserving the hexagonal symmetry while expanding the phase space for potential spin liquids. We use a combination of iterative minimization, classical Monte Carlo and analytical techniques to determine the complete ground state phase diagram. It is quite rich, with a variety of non-coplanar and non-collinear phases not found in the previously studied limits. In particular, our analysis reveals the triangular lattice critical point to be a multicritical point with two new phases vanishing via second order transitions at the critical point. We analyze these phases within linear spin wave theory and discuss consequences for the S = 1/2 spin liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.