Abstract

Abstract Recently, the 1st named author together, with Xinan Ma [12], has proved the existence of the Neumann problems for Hessian equations. In this paper, we proceed further to study classical Neumann problems for Hessian equations. We prove here the existence of classical Neumann problems for uniformly convex domains in $\mathbb {R}^{n}$. As an application, we use the solution of the classical Neumann problem to give a new proof of a family of Alexandrov–Fenchel inequalities arising from convex geometry. This geometric application is motivated by Reilly [18].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.