Abstract

We report a study of adsorption of binary mixtures of hard spheres of different sizes on a hard wall by using a version of density-functional theory, the Born-Green-Yvon (BGY) equation and Monte Carlo simulations. Following the BGY approach introduced by Fischer and Methfessel for single-component fluids, the proposed extension uses coarse-grained densities to approximate the contact values of pair distribution function of hard spheres. A procedure for evaluation of the coarse-grained densities, leading to an exact theory in one dimension, is proposed. The density-functional theory employed here, however, uses the Meister-Kroll and Groot approach. Comparisons of theoretical calculations with Monte Carlo simulations, as well as with previous theoretical predictions, have shown that density-functional theory reproduces the pseudo-experimental data accurately, even for extremely large size ratios of molecules of both species. The accuracy of the predictions of the BGY approach is less satisfactory, and for h...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.