Abstract

We investigate antiferro quadrupole orders in a diamond lattice under magnetic fields by Monte Carlo simulations for two types of classical effective models. One is an XY model with Z_3 anisotropy, and the other is a two-component phi^4 model with a third-order anisotropy. We confirm that the universality class of the zero-field transition is that for the three-dimensional XY model. Magnetic field corresponds to a Z_3 field in the effective model, and under this field, we find that collinear and canted antiferro-quadrupole orders compete. Each phase is characterized by symmetry breaking in the sector of (sublattice Z_2)x(reflection Z_2 for the order parameter). When Z_3 anisotropy and magnetic field vary, it turns out that this system is a good playground for various multicritical points; bicritical and tetracritical points emerge in a finite field. Another important finding is about the scaling of parasitic ferro quadrupole order at the zero-field critical point. This is the secondary order parameter induced by the primary antiferro order, and its critical exponent beta'=0.815 clearly differs from the expected value that is twice the value for the primary order parameter. The corresponding correlation length exponent is also different, nu'=0.597(12). We also discuss relation of the present effective quadrupole models with the 3-state Potts model as well as implication to undertanding of orbital orders in Pr-based 1-2-20 compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.