Abstract

The matrix sine-Gordon theory, a matrix generalization of the well-known sine-Gordon theory, is studied. In particular, the A3 generalization where fields take values in SU(2) describes integrable deformations of conformal field theory corresponding to the coset SU(2) × SU(2)/SU(2). Various classical aspects of the matrix sine-Gordon theory are addressed. We find exact solutions, solitons and breathers which generalize those of the sine-Gordon theory with internal degrees of freedom, by applying the Zakharov-Shabat dressing method and explaining their physical properties. Infinite current conservation laws and then Backlund transformation of the theory are obtained from the zero curvature formalism of the equation of motion. From the Backlund transformation, we also derive exact solutions as well as a nonlinear superposition principle by making use of Bianchi's permutability theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.