Abstract

In this article a particular classical, relativistic Lagrangian based on the isotropic fermion sector of the Lorentz-violating (minimal) Standard Model extension is considered. The motion of the associated classical particle in an external electromagnetic field is studied, and the evolution of its spin, which is introduced by hand, is investigated. It is shown that the particle travels along trajectories that are scaled versions of the standard ones. Furthermore there is no spin precession due to Lorentz violation, but the rate is modified at which the longitudinal and transverse spin components transform into each other. This demonstrates that it is practical to consider classical physics within such an isotropic Lorentz-violating framework and it opens the pathway to study a curved background in that context.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call