Abstract

Magnetic properties of the Heisenberg antiferromagnet with spin quantum numberS→∞ on the face-centered cubic lattice are studied as function of temperature and magnetic field, using molecular field approximation and Monte Carlo methods. In order to model Europiumtelluride, we use isotropic exchange interactions between nearest- and nextnearest neighbors; the values of these exchange constants are taken from experiments. In addition, a pseudo-dipolar anisotropy (truncated after the next-nearest neighbor distance) is included; the molecular field calculations also are performed with the full dipolar of real EuTe in two respects: the structure in zero magnetic field involves 8 sublattices in the model rather than only two; the bicritical point, above which in the temperatureT magnetic fieldH plane the spin flop phase appears, occurs atH=0 in the model rather than at nonzero field. Possible additional interactions responsible for these discrepancies are discussed. Applying finite size scaling techniques we give also a preliminary analysis of the critical behavior of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.