Abstract
In this review we present the salient features of dynamical chaos in classical gauge theories with spatially homogeneous fields. The chaotic behaviour displayed by both abelian and non-abelian gauge theories and the effect of the Higgs term in both cases are discussed. The role of the Chern-Simons term in these theories is examined in detail. Whereas, in the abelian case, the pure Chern-Simons-Higgs system is integrable, addition of the Maxwell term renders the system chaotic. In contrast, the non-abelian Chern-Simons-Higgs system is chaotic both in the presence and the absence of the Yang-Mills term. We support our conclusions with numerical studies on plots of phase trajectories and Lyapunov exponents. Analytical tests of integrability such as the Painleve criterion are carried out for these theories. The role of the various terms in the Hamiltonians for the abelian Higgs, Yang-Mills-Higgs and Yang-Mills-Chern-Simons-Higgs systems with spatially homogeneous fields, in determining the nature of order-disorder transitions is highlighted, and the effects are shown to be counter-intuitive in the last-named system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.