Abstract
A Hamilton-Jacobi formalism of classical relativistic field theory is developed. Both "time-independent" and "time-dependent" formulations are given, and the relation between them is discussed. In the former, the constants of the motion are identified with the "new" field variables, whereas in the latter they are the values of the fields on a suitable spacelike surface. The explicit introduction of a Hamiltonian density is avoided. As an illustration of the respective procedures, the classical Dirac and Klein-Gordon free fields are solved explicitly. A perturbation method is formulated for the case of fields in interaction. The metric tensor is not treated as a field quantity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.