Abstract

It was demonstrated in earlier work that the vector representation of electromagnetic theory can be factorized into a pair of two-component spinor field equations (Sachs & Schwebel, 1962). The latter is a generalization of the usual formalism, in the sense that in addition to predicting all of the effects that are implied by the vector theory, it predicts additional observable effects that are out of the domain of prediction of the Maxwell formalism. The latter extra predictions were derived in previous publications (Sachs & Schwebel, 1961, 1963; Sachs, 1968a, b). In this paper, the spinor formalism is applied to effects that are expected to agree with the predictions of the standard formalism—the Coulomb force between point charges and the measured speed of a charged particle which moves in an electric potential. While there are no vector or tensor variables involved in this formalism, the results are found, as expected, to be in agreement with the conventional representation of electromagnetic theory. The analysis serves the role of demonstrating that in the appropriate limiting case, the factorized spinor formulation of electromagnetism does predict the explicit classical effects that are also predicted by Maxwell's field equations. The paper also presents a derivation of the general form of the solutions of the spinor field equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.