Abstract

The sticking of oxygen atoms with collision energies in the range 0.1–1 eV on a clean (1 0 0) β-cristobalite surface with surface temperatures between 300–1100 K has been investigated using classical trajectories for normal and off-normal incidence. A full dimensional adiabatic potential energy surface (PES) based on a dense grid of density functional theory (DFT) points was constructed by means of the corrugation reducing procedure. Sticking probabilities are very high (>0.9) for all conditions, increasing with collision energy and decreasing with surface temperature. This behavior can be interpreted by decomposing the sticking between adsorption and absorption, which show different trends. The large attractive character of the PES favors the absorption or penetration into the big unit cell of the β-cristobalite, with a predominant direct mechanism instead of a dynamic trapping, accordingly also with the quick dissipation of the oxygen energy into the slab. Calculated thermal initial sticking coefficients seem to depend on the type of silica structure. Moreover, these initial thermal coefficients are much higher than values derived using expressions obtained from standard transition state theory even when using as parameters values extracted from DFT calculations. Therefore, the use of these expressions in kinetic models for O or N recombination over silica should be reconsidered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.