Abstract

We give a complete description of the classical dynamics of two electrons in the Coulomb potential of a positively charged nucleus for total energy E=0 and angular momentum L=0. The effectively four-dimensional phase space can be divided into partitions spanned by the stable and unstable manifold of the Wannier ridge space. We identify a further approximate symmetry by choosing an appropriate Poincaré surface of section in this dynamical system. In addition, a dividing surface between the dynamics influenced by the two collinear spaces, the stable Zee space and the strongly chaotic eZe space can be identified. We discuss potential extensions of the binary symbolic dynamics found in collinear two-electron atoms to the noncollinear parts of the phase space for E< or =0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.