Abstract
The so-called Poghossian identities connecting the toric and spherical blocks, the AGT relation on the torus and the Nekrasov-Shatashvili formula for the elliptic Calogero-Moser Yang's (eCMY) functional are used to derive certain expressions for the classical 4-point block on the sphere. The main motivation for this line of research is the longstanding open problem of uniformization of the 4-punctured Riemann sphere, where the 4-point classical block plays a crucial role. It is found that the obtained representation for certain 4-point classical blocks implies the relation between the accessory parameter of the Fuchsian uniformization of the 4-punctured sphere and the eCMY functional. Additionally, a relation between the 4-point classical block and the $N_f=4$, ${\sf SU(2)}$ twisted superpotential is found and further used to re-derive the instanton sector of the Seiberg-Witten prepotential of the $N_f=4$, ${\sf SU(2)}$ supersymmetric gauge theory from the classical block.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.