Abstract

If two identical copies of a completely depolarizing channel are put into a superposition of their possible causal orders, they can transmit non-zero classical information. Here, we study how well we can transmit classical information with $N$ depolarizing channels put in superposition of $M$ causal orders via quantum SWITCH. We calculate Holevo quantity if the superposition uses only cyclic permutations of channels and find that it increases with $M$ and it is independent of $N$. For a qubit it never reaches $1$ if we are increasing $M$. On the other hand, the classical capacity decreases with the dimension $d$ of the message system. Further, for $N=3$ and $N=4$ we studied superposition of all causal orders and uniformly superposed causal orders belonging to different cosets created by cyclic permutation subgroup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.