Abstract

The chaotic dynamics of sound rays in a near-bottom waveguide channel is studied on the basis of the Hamiltonian dynamics of nonparaxial rays in inhomogeneous moving media. The bottom is assumed to have a two-dimensional roughness. The mapping of the coordinates of the rays upon reflection from the rough bottom is derived through a solution of the corresponding ray equations in an unperturbed waveguide with a horizontal bottom. A numerical analysis of the mapping reveals that a chaotic instability of rays which start out at small angles from the horizontal develops at short distances from the source. Because of this instability, the path segments of a ray along the horizontal coordinates and the signal passage time along a ray are random functions of the angle at which the ray emerges from the source. Upon a further reflection of rays from the rough bottom, there is a diffusion of rays in a stochastic ring which forms in the plane of horizontal ray directions as a result of the overlap and intersection of resonance curves. A qualitative analysis of this effect is carried out. This effect leads to a nearly isotropic distribution of ray directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.