Abstract
A long-standing problem on the classical capacity of bosonic Gaussian channels has recently been resolved by proving the minimum output entropy conjecture. It is also known that the ultimate capacity quantified by the Holevo bound can be achieved asymptotically by using an infinite number of channels. However, it is less understood to what extent the communication capacity can be reached if one uses a finite number of channels, which is a topic of practical importance. In this paper, we study the capacity of Gaussian communication, i.e., employing Gaussian states and Gaussian measurements to encode and decode information under a single-channel use. We prove that the optimal capacity of single-channel Gaussian communication is achieved by one of two well-known protocols, i.e., coherent-state communication or squeezed-state communication, depending on the energy (number of photons) as well as the characteristics of the channel. Our result suggests that the coherent-state scheme known to achieve the ultimate information-theoretic capacity is not a practically optimal scheme for the case of using a finite number of channels. We find that overall the squeezed-state communication is optimal in a small-photon-number regime whereas the coherent-state communication performs better in a large-photon-number regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.