Abstract

We present high resolution photoelectron energy spectra of noble gas atoms from high intensity above-threshold ionization (ATI) at midinfrared wavelengths. An unexpected structure at the very low-energy portion of the spectra, in striking contrast to the prediction of the simple-man theory, has been revealed. A semiclassical model calculation is able to reproduce the experimental feature and suggests the prominent role of the Coulomb interaction of the outgoing electron with the parent ion in producing the peculiar structure in long wavelength ATI spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.