Abstract
The out-of-time ordered correlator (OTOC) is a measure of scrambling of quantum information. Scrambling is intuitively considered to be a significant feature of chaotic systems, and thus, the OTOC is widely used as a measure of chaos. For short times exponential growth is related to the classical Lyapunov exponent, sometimes known as the butterfly effect. At long times the OTOC attains an average equilibrium value with possible oscillations. For fully chaotic systems the approach to the asymptotic regime is exponential, with a rate given by the classical Ruelle-Pollicott resonances. In this work, we extend this notion to the more generic case of systems with mixed dynamics, in particular using the standard map, and we are able to show that the relaxation to equilibrium of the OTOC is governed by generalized classical resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.